
R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Copyright © 2014 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Computational and Theoretical Nanoscience

Vol. 11, 1–8, 2014

The Effect of Rotation and Initial Stress on Thermal
Shock Problem for a Fiber-Reinforced Anisotropic

Half-Space Using Green-Naghdi Theory

Ibrahim A. Abbas1�2�∗ and Ashraf M. Zenkour3
1Faculty of Science, Department of Mathematics, Sohag University, Sohag, Egypt

2Faculty of Science and Arts—Khulais, Department of Mathematics,
King Abdulaziz University, Jeddah, Saudi Arabia

3Faculty of Science, Department of Mathematics, King Abdulaziz University,
P.O. Box 80203, Jeddah 21589, Saudi Arabia

This article presents a two-dimensional problem of generalized thermoelasticity for a fiber-
reinforcement anisotropic half-space under a thermal shock at its upper surface. The effects of initial
stress and rotation are both studied. Green and Naghdi’s theory of thermoelasticity is employed to
study the present problem. The inclusion of reinforcement anisotropic elastic parameter is made and
two additional terms are added to the displacement equation. The problem is solved numerically
by using the finite element method. Numerical results for displacements, stresses and tempera-
ture are given and presented graphically in different positions. Comparisons are made for different
values of the angular velocity and initial stress. The inclusion of the reinforcement parameters is
also investigated.
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1. INTRODUCTION

The problem of a half-space subjected to a thermal shock
in the context of the theory of uncoupled thermoelastic-
ity is solved firstly by Danilovskaya.1 In the uncoupled
thermoelasticity theory the temperature is governed by
a parabolic partial differential equation which does not
contain any elastic terms. So, the elastic changes have
no effect on the temperature. It was not much latter that
many attempts were made to remedy the shortcomings
of this theory. Biot2 formulated the theory of coupled
thermoelasticity to eliminate the paradox inherent in the
classical uncoupled theory. The heat equations for both
theories, however, are of the diffusion type predicting infi-
nite speeds of propagation for heat waves contrary to phys-
ical observations.
The theory of thermoelasticity that includes the effect

of temperature change has been well established. Accord-
ing to this theory, the temperature field is coupled with
the elastic strain field. This theory covers a wide range of
extensions of classical dynamical coupled thermoelastic-
ity. Lord and Shulman3 and Green and Lindsay4 extended

∗Author to whom correspondence should be addressed.

the coupled theory of thermoelasticity by introducing the
thermal relaxation times in the constitutive equations.
Additional thermoelasticity theories have been presented
and investigated by other researchers.5–12

Lord and Shulman3 considered isotropic solids and
introduced one relaxation time parameter into the Fourier
heat conduction equation; that is, both the heat flux and
its time derivative are considered in the heat conduction
equation. The heat equation associated with this theory is
thus hyperbolic. A direct consequence is that the paradox
of infinite speed of propagation inherent in both the uncou-
pled and coupled theories of classical thermoelasticity is
eliminated and the heat wave feature can be modeled
by the generalized thermoelasticity. Green and Lindsay4

developed a temperature-rate dependent thermoelasticity
which does not violate the Fourier’s law of heat conduc-
tion when the body under consideration has a center of
symmetry. In this theory, both the equations of motion and
heat conduction are hyperbolic but the equation of motion
is modified and differs from that of classical coupled ther-
moelasticity theory. Green and Naghdi9 provided sufficient
basic modifications in the constitutive equations to permit
treatment of a much wider class of heat flow problem.
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Fiber-reinforced materials have many applications in
aerospace and automotive fields, as well as in sailboats,
and notably in modern bicycles and motorcycles, where
their high strength-to-weight ratio is of importance.
Improved manufacturing techniques are reducing the costs
and time to manufacture, making it increasingly common
in small consumer goods as well, such as laptops, tripods,
fishing rods, paintball equipment, archery equipment, rac-
quet frames, stringed instrument bodies, and classical gui-
tar strings. Hashin and Rosen13 gave the elastic moduli
for fiber-reinforced materials. Sengupta and Nath14 dis-
cussed the problem of surface waves in fiber-reinforced
anisotropic elastic media. Singh15 showed that, for wave
propagation in fiber-reinforced anisotropic media, this
decoupling cannot be achieved by the introduction of the
displacement potentials.
The one-dimensional thermal shock problem has been

considered by Sherief and Dhaliwal16 using Lord and
Shulman’s theory. The same thermal shock problem has
been considered by Dhaliwal and Rokne17 using Green
and Lindsay’s theory. Once again, the same thermal shock
problem has been considered by Li and Dhaliwal18 using
Green and Naghdi’s theory. In this paper, two-dimensional
thermal-shock problem of a fiber-reinforcement anisotropic
half-space is studied. The effect of both initial stress
and rotation is investigated. The governing equations of
medium are derived based upon Green and Naghdi’s theory.
The finite element solution for the coupled governing equa-
tions is obtained. Numerical results are provided to show
the influence of the fiber-reinforcement parameters on the
temperature, displacements and stresses.

2. FORMULATION OF THE PROBLEM

Let us consider the problem of a thermoelastic half-space
(x≥ 0) such that its surface is subjected to a thermal shock
which is a function of y and t. Thus, all quantities consid-
ered will be functions of the time t, and of the coordinates
x and y. The medium is rotating uniformly with an angular
velocity �=�n in which n is a unit vector representing
the direction of the axis of rotation. The components of
the displacement vector ui and temperature T can be taken
in the following forms:

u1 = u�x� y� t�� u2 = v�x� y� t�� u3 = 0

T = T �x� y� t�
(1)

According to Green and Nagdhi,9 Singh19 and Qian et al.20

the linear equations governing thermoelastic interactions
in the homogeneous anisotropic solid in the absence of
body force and heat sources are given as follows:

�ij� j + �ui�k�
0
kj ��j = ��üi+ ��× ��×u�	i+2��× u̇�i


i� j = 1�2�3 (2)

K∗T�ij +Kij Ṫ�ij = �ceT̈ +T0üi� j (3)

where � is the mass density; �ij is the stress tensor; �0
kj is

the initial stress tensor; T0 is the reference uniform temper-
ature of the body; ce is the specific heat at constant strain;
Kij is the thermal conductivity; and K∗ is the material char-
acteristic of the theory. The comma notation is used for
spatial derivatives and superimposed dot represents time
differentiation.
The constitutive equations for a linearly thermoelas-

tic fiber-reinforced anisotropic medium whose preferred
direction is that of a unit vector a is

�ij = �ekk�ij +2T eij +��akamekm�ij +aiajekk�

+2ak�L−T ��aiekj +ajeki�+�akamekmaiaj

−�ij�T −T0��ij � i� j� k�m= 1�2�3 (4)

where eij is the strain tensor; �ij is Kronecker’s delta; �ij is
the thermal elastic coupling tensor; � and T are Lamé’s
elastic parameters; ���, and L are additional rein-
forced anisotropic elastic parameters; and a≡ �a1� a2� a3�,
a2
1+a2

2+a2
3 = 1.

The displacement equation of motion in the rotating
frame of reference has two additional terms (Schoenberg
and Censor21): Centripetal acceleration, �× ��×u� due
to time-varying motion only and the Corioli’s acceler-
ation 2��× u̇�. These terms should be disappearing in
the non-rotating media. We choose the fiber-direction
as a≡ �1�0�0� so that the preferred direction is the
x-axis and there exists only two constant initial stress
components �0

11 = �0
22 = �0. So, Eqs. (2)–(4) may be

simplified to be

�A11+�0�
�2u

�x2
+ �A12+L�

�2v

�x�y
+ ��0+L�

�2u

�y2

= �11

�T

�x
+�

�2u

�t2
−�2u−2�

�v

�t
(5)

�A12+L�
�2u

�x�y
+ ��0+L�

�2v

�x2
+ �A22+�0�

�2v

�y2

= �22

�T

�y
+�

�2v

�t2
−�2v+2�

�u

�t
(6)

(
K∗ +K11

�

�t

)
�2T

�x2
+
(
K∗ +K22

�

�t

)
�2T

�y2

= �ce
�2T

�t2
+T0

�2

�t2

(
�11

�u

�x
+�22

�v

�y

)
(7)

�11 = A11

�u

�x
+A12

�v

�y
−�11�T −T0� (8)

�22 = A12

�u

�x
+A22

�v

�y
−�22�T −T0� (9)
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�12 = A13

(
�v

�x
+ �u

�y

)
(10)

where

A11 = �+2��+T �+4�L−T �+�

A12 = �+�� A13 = L� A22 = �+2T

�11 = �2�+3�+4l−2T +���11+ ��+���22

�22 = �2�+���11+ ��+2T ��22

(11)

in which �11 and �22 are coefficients of linear
thermal expansion. For convenience, the following non-
dimensional variables are used:

�x′� y′� u′� v′�= c��x� y�u� v�� t′ = c2�t

T ′ = �11�T −T0�

�c2
� �′ = �

c2�

�� ′
11��

′
12��

′
22��

′
0�=

1
�c2

��11��12��22��0�

c2 = A11

�
� � = �ce

K11

(12)

In terms of the non-dimensional quantities defined
in Eq. (12), the above governing equations reduce to
(dropping the dashed for convenience)

�1+�0�
�2u

�x2
+ �B1+B4�

�2v

�x�y
+ ��0+B4�

�2u

�y2

= �T

�x
+ �2u

�t2
−�2u−2�

�v

�t
(13)

�B4+�0�
�2u

�x�y
+ �B1+B4�

�2v

�x2
+ �B2+�0�

�2v

�y2

= B3

�T

�y
+ �2v

�t2
−�2v+2�

�u

�t
(14)

(
�2+�3

�

�t

)
�2T

�x2
+
(
�2+��3

�

�t

)
�2T

�y2

= �2T

�t2
+ �2

�t2

(
�0

�u

�x
+�1

�v

�y

)
(15)

�11 =
�u

�x
+B1

�v

�y
−T (16)

�22 = B1

�u

�x
+B2

�v

�y
−B3T (17)

�12 = B4

(
�v

�x
+ �u

�y

)
(18)

where

�B1�B2�B4�=
1
A11

�A12�A22�A13�� B3 =
�22

�11

�= K22

K11

� ��0� �1�=
T0�11

A11�ce
��11��22�

��2� �3�=
1
�ce

(
K∗

c2
�K11�

)
(19)

3. APPLICATION

We consider the problem of a half-space � , which is
defined as follows:

� =��x�y�z� � 0≤x<��−�<y<��−�<z<�	 (20)

The surface of the half-space is taken to be traction free,
and the thermal shock g�y� t� applied on the surface at
x = 0 is taken of the form

g�y� t�= T1H�t�H�l−�y�� (21)

where H is the Heaviside unit step function and T1 is a
constant. This means that heat is applied on the surface
of the half-space on a narrow band of width 2l surround-
ing the y-axis to keep it at temperature T1, while the rest
of the surface is kept at zero temperature. Assuming the
following initial conditions:

u= v = T = 0� u̇= v̇ = Ṫ = 0� at t = 0 (22)

4. FINITE ELEMENT FORMULATION

The Finite element method is a powerful technique
originally developed for numerical solution of complex
problems in structural mechanics, and it remains the
method of choice for complex systems. A further ben-
efit of this method is that it allows physical effects
to be visualized and quantified regardless of exper-
imental limitations. On the other hand, the finite
element method in different generalized thermoelastic
problems has been applied by many authors (see for
instant22–26).
In this section, the governing equations of generalized

thermoelasticity based upon Green and Naghdi’s theory
are summarized, using the corresponding finite element
equations. In the finite element method, the displacement
components u, v and the temperature T are related to the
corresponding nodal values by

u=
m∑
i=1

Niui�t�� v =
m∑
i=1

Nivi�t�� T =
m∑
i=1

NiTi�t� (23)

where m denotes the number of nodes per element, and
Ni are the shape functions. The eight-node isoparametric,
quadrilateral element is used for displacement components
and temperature calculations. The weighting functions and
the shape functions coincide. Thus,

�u=
m∑
i=1

Ni�ui� �v=
m∑
i=1

Ni�vi� �T =
m∑
i=1

Ni�Ti (24)

It should be noted that appropriate boundary conditions
associated with the governing equations, Eqs. (13)–(15)
must be adopted in order to properly formulate a prob-
lem. Boundary conditions are either essential (geometric)
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or natural (traction) types. Essential conditions are pre-
scribed displacements u, v and temperature T while, the
natural boundary conditions are prescribed tractions and
heat flux. They expressed as

�xxnx +�xyny = �̄x� �xynx +�yyny = �̄y�

qxnx +qyny = q̄
(25)

where nx and ny are direction cosines of the outward unit
normal vector at the boundary, �̄x� �̄y are the given tractions
values, and q̄ is the given surface flux.
In the absence of body force, the governing equa-

tions are multiplied by weighting functions and then are
integrated over the spatial domain � with the bound-
ary � . Applying integration by parts and making use
of the divergence theorem reduce the order of the spa-
tial derivatives and allows for the application of the
boundary conditions. Thus, the finite element equations
corresponding to Eqs. (13)–(15) can be obtained as

∫
�

⎧⎪⎪⎨
⎪⎪⎩

�u�̄x

�v�̄y

�T q̄

⎫⎪⎪⎬
⎪⎪⎭

d�

=
∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

��u

�x
�xx +

��u

�y
�xy

��v

�x
�xy +

��v

�y
�yy

�2

��T

�x

�T

�x
+�2

��T

�y

�T

�y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

d�

+
∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u

(
�2u

�t2
−�2u−2�

�v

�t

−�o

(
�2u

�x2
+ �2u

�y2

))

�v

(
�2v

�t2
−�2v+2�

�u

�t

−�o

(
�2v

�x2
+ �2v

�y2

))

�T

(
�2T

�t2
+ �2

�t2

(
�0

�u

�x
+�1

�v

�y

)

−�3

�

�t

(
�2T

�x2
+�

�2T

�y2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d� (26)

Substituting the constitutive relations Eqs. (16)–(18),
and Eqs. (24) and (25) into Eq. (26) leads to

me∑
e=1

⎛
⎜⎜⎝

⎡
⎢⎢⎣
Me

11 0 0

0 Me
22 0

Me
31 Me

32 Me
33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

üe

v̈e

T̈ e

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣

0 Ce
12 0

Ce
21 0 0

0 0 Ce
33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u̇e

v̇e

Ṫ e

⎫⎪⎪⎬
⎪⎪⎭

+

⎡
⎢⎢⎣
Ke

11 Ke
12 Ke

13

Ke
21 Ke

22 Ke
23

0 0 Ke
33

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ue

ve

T e

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

F e
1

F e
2

F e
3

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ (27)

where me is the total number of elements. The coefficients
in Eq. (27) are presented in Appendix A.
Symbolically, the discredited equations of Eq. (27) can

be written as
Md̈+ cḋ+Kd = F ext (28)

where M�C�K� and F ext represent the mass, damping,
stiffness matrices, and external force vectors, respectively,
d= �u v T 
T . On the other hand, the time derivatives of the
unknown variables have to be determined by the Newmark
time integration method (see Wriggers27).

5. NUMERICAL EXAMPLES

To illustrate the proposed finite element approach, the fol-
lowing physical constants for generalized fiber-reinforced
thermoelastic materials are used.

�= 5�65×1010 N ·m−2� T = 2�46×1010 N ·m−2

L = 5�66×1010 N ·m−2� �= 2660 kg�m−3

�=−1�28×1010 N ·m−2� �= 220�90×1010 N ·m−2

�11 = 0�017×10−4 k−1� �22 = 0�015×10−4 k−1

ce = 0�787×103 J ·kg−1 ·k−1� T0 = 293 k� l = 0�5

K11 = 0�0921×103 J ·m−1 · s−1 ·k−1� T1 = 1

K22 = 0�0963×103 J ·m−1 · s−1 ·k−1

To study the effect of reinforcement on wave
propagation, some numerical examples are presented
graphically. The numerical applications will be carried out
for the displacements u and v, temperature T , and stresses
�11, �12 and �22 that being reported herein at y = 0�5,
t = 0�2, T1 = 1, and for different values of initial stress �0

and angular velocity �.
The distributions of u, v, T , �11, �12 and �22 are pre-

sented in Figures 1–6 through the longitudinal x-direction
for � = 2 and for different values of �0. All quantities,
except the temperature, are very sensitive to the variation
of the initial stress �0. As �0 increases the displacement v
and the longitudinal stress �11 increase while the displace-
ment u decreases. The temperature may be independent
of �0 while the values of the normal stress �22 and in-
plane stress �12 oscillate randomly with distance x. The
displacements vanish at x= 1�6, the longitudinal stress �11

4 J. Comput. Theor. Nanosci. 11, 1–8, 2014
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Fig. 1. Variation of horizontal displacement u with distance x.

Fig. 2. Variation of vertical displacement v with distance x.

and the normal stress �22 vanish at x = 2�0, the in-plane
stress �12 vanishes at x = 1�5, and the temperature van-
ishes at x = 2�5.
The effect of the angular velocity � is also discussed

here. Similar plots for all quantities are presented in
Figures 7–12 for �0 = 1 and different values of �.

Fig. 3. Variation of temperature T with distance x.

Fig. 4. Variation of stress component �11 with distance x.

Fig. 5. Variation of stress component �12 with distance x.

Figure 7 shows that the horizontal displacement u is
no longer increasing and decreasing monotonically with
maximum values at 0�3 < x < 0�5. Figure 8 shows that
the vertical displacement decreases directly as x increases.
Both u and v reach to zero when x = 1�5. Once again,

Fig. 6. Variation of stress component �22 with distance x.

J. Comput. Theor. Nanosci. 11, 1–8, 2014 5
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Fig. 7. Variation of horizontal displacement u with distance x.

Fig. 8. Variation of vertical displacement v with distance x.

the temperature is independent of � and it decreases
as x increases and vanishes when x = 2�5 as shown
in Figure 9. The longitudinal stress �11, as shown in
Figure 10, increases as � decreases and this irrespective
to the value of x. The same behavior is illustrated by
�22 in Figure 12. The two stresses vanish when x = 2�0.

Fig. 9. Variation of temperature T with distance x.

Fig. 10. Variation of stress component �11 with distance x.

Fig. 11. Variation of stress component �12 with distance x.

Also, Figure 11 shows that �12 oscillate randomly with
distance x and vanishes when x = 1�5.
Finally, the inclusion of the fiber-reinforcement coeffi-

cients is also discussed. The quantities of thermoelastic
medium with fiber-reinforcements (WRE) and those
without fiber-reinforcements (NRE) are presented in

Fig. 12. Variation of stress component �22 with distance x.

6 J. Comput. Theor. Nanosci. 11, 1–8, 2014
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Fig. 13. Variation of horizontal displacement u with distance x.

Fig. 14. Variation of vertical displacement v with distance x.

Figures 13–18 for �0 = 1 and � = 2. It is observed that
the variations of all quantities with fiber-reinforcements
(WRE) are least oscillatory than the variations of all quan-
tities without fiber-reinforcements (NRE).

Fig. 15. Variation of temperature T with distance x.

Fig. 16. Variation of stress component �11 with distance x.

Fig. 17. Variation of stress component �12 with distance x.

Fig. 18. Variation of stress component �22 with distance x.

6. CONCLUSION

As observed of the plots of all quantities, the inclusion of
the fiber-reinforcement coefficients, as well as the initial
stress and rotation play an important role of deformation of
the medium. The variations of displacements may be more
uniform than those of stresses. However, the temperature
still independent of all variables.

J. Comput. Theor. Nanosci. 11, 1–8, 2014 7
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APPENDIX A

The coefficients appeared in Eq. (27) are given by

Me
11 =

∫
�
�N 
T �N 
d�� Ce

12 =
∫
�
−2��N
T �N 
d�

Ke
11 =

∫
�

([
�N

�x

]T [
�N

�x

]
+B4

[
�N

�y

]T [
�N

�y

]

−�o�N 
T
[
�2N

�x2
+ �2N

�y2

]
−�2�N 
T �N 


)
d�

Ke
12 =

∫
�

(
B1

[
�N

�x

]T [
�N

�y

]
+B4

[
�N

�y

]T [
�N

�x

])
d�

Ke
13 =

∫
�
−
[
�N

�x

]T

�N 
d�� Me
22 =

∫
�
�N 
T �N 
d�

Ce
21 =

∫
�
2��N
T �N 
d�

Ke
21 =

∫
�

(
B4

[
�N

�x

]T [
�N

�y

]
+B1

[
�N

�y

]T [
�N

�x

])
d�

Ke
22 =

∫
�

(
B4

[
�N
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